Handbuch: 5.4. Inbetriebnahme

Nachdem Sie IHM auf Ihrem System installiert haben, werden Sie in der Oberfläche ein Menü vorfinden. Einer der Punkte ist der <u>Assistent</u>, darunter der <u>IHM Setup</u> Assistent. Wenn Sie darauf klicken, werden Sie durch einen Workflow geleitet, um einen neuen Datensatz mit Modell und dynamischen Grenzwerte zu generieren.

Choos	se an existing plant or	Create a new plant					
Plant	algorithmica (IHM): Turbine - Sample 🔹 🔻	Company					
	Save	Division					
		Plant					
		Equipment					
		Custom Code					
		Save					

Als Erstes generieren Sie eine neue Anlage. Obwohl sie Anlage genannt wird, können Sie auch für jede neue Maschine eine solche eigene <u>Anlage</u> erstellen. Die Entscheidung darüber, welche Datenpunkte zu einem singulären Analyserahmen – hier als "Anlage" bezeichnet – gehören sollen, bleibt Ihnen überlassen und sollte davon abhängig gemacht werden, welche Teile zusammenhängen. Die IHM-Software kann mehrere Anlagen gleichzeitig handhaben.

	Tag	PLS Tag	Sensor Name	Description	Units	Minimum	Maximum	Delta	Limited	Low Green	High Green	Low Yellow	High Yellow	Low Orange	High Orange
1	SCH0201001	SCH0201001	GG Rotation Rate max Setpoint	GG Rotation Rate max Setpoint	rpm	0.00	15000.00	7500.00	No 🔻						
Z	SCL0201001	SCL0201001	GG Rotation Rate min Setpoint	GG Rotation Rate min Setpoint	rpm	0.00	15000.00	7500.00	No 🔻						
3	SI0201001	SI0201001	GG Rotation Rate	GG Rotation Rate	rpm	0.00	15000.00	7500.00	No 🔻						14203.00
4	SI0201001A	SI0201001A	GG Rotation Rate A	GG Rotation Rate A	rpm	0.00	15000.00	7500.00	No 🔻						14203.00
5	SI0201001B	SI0201001B	GG Rotation Rate B	GG Rotation Rate B	rpm	0.00	15000.00	7500.00	No 🔻						14203.00
6	SI0201001C	SI0201001C	GG Rotation Rate C	GG Rotation Rate C	rpm	0.00	15000.00	7500.00	No 🔻						14203.00
7	ZI0201051A	ZI0201051A	GG Axial Displacement A	GG Axial Displacement A	mm	-1.00	1.00	1.00	Yes 🔻	-0.25	0.60	-0.35			0.70
8	ZI0201051B	ZI0201051B	GG Axial Displacement B	GG Axial Displacement B	mm	-1.00	1.00	1.00	Yes 🔻	-0.25	0.60	-0.35			0.70
9	VI0201061X	VI0201061X	GG Axial Vibration Forward Bearing X	GG Axial Vibration Forward Bearing X	μm	0.00	150.00	75.00	Yes 🔻		70.00				100.00
10	VI0201061Y	VI0201061Y	GG Axial Vibration Forward Bearing Y	GG Axial Vibration Forward Bearing Y	μm	0.00	150.00	75.00	Yes 🔻		70.00				100.00
11	VI0201071X	VI0201071X	GG Axial Vibration Backward Bearing X	GG Axial Vibration Backward Bearing X	μm	0.00	150.00	75.00	Yes 🔻		70.00				100.00
12	VI0201071Y	VI0201071Y	GG Axial Vibration Backward Bearing Y	GG Axial Vibration Backward Bearing Y	μm	0.00	150.00	75.00	Yes 🔻		70.00				100.00
13	KI0201081	KI0201081	GG Keyphasor	GG Keyphasor	-	0.00	1.00	0.50	No 🔻						
14	TI0201111A	TI0201111A	GG Forward Radial Bearing	GG Forward Radial Bearing	°C	-30.00	200.00	115.00	Yes 🔻		90.00				110.00
15	TI0201121A	TI0201121A	GG Backward Radial Bearing	GG Backward Radial Bearing	°C	-30.00	200.00	115.00	Yes 🔻		90.00				110.00
16	TI0201131A	TI0201131A	GG Thrust Bearing inactive	GG Thrust Bearing inactive	*C	-30.00	200.00	115.00	Yes 🔻		90.00				110.00
17	TI0201141A	TI0201141A	GG Thrust Bearing active	GG Thrust Bearing active	°C	-30.00	200.00	115.00	Yes 🔻		90.00				110.00

Als Zweites sollten Sie die Messungen und deren Metadaten definieren. Das wird in dem entsprechenden Wizard im Detail erläutert. Sie können diese Information direkt in das Formular auf dieser Seite eingeben; oder aber Sie bereiten diese Informationen extern vor, um sie im nächsten Schritt als Datei hochzuladen.

Plant	algorithmica (IHM): Turbine - Sample
Tags File	Choose file
File Format	CSV
File Data	Choose file
Delete present data?	Yes
	Upload

Drittens sollten Sie die historischen Daten hochladen, die Sie aus Ihrer Daten-

Historie exportiert haben. Hier sollten Sie die Metadaten hochladen, sofern Sie sie zuvor noch nicht per Hand in das Online-Formular eingetippt haben.

he model is not	plausible.							
Tags have too many illegal points								
total of 29 tags	have historical v	alues outside of	their [minii	mum, maximu	m] ranges a	ind are thus	not plausible.	
lease check the	settings of these	e ranges.						
Tags with di	sallowed points	s (Total: 29 Tags	5)					
Тад	Sensor Name	Description	Unite	Proportion	Smallest	largest	Minimum	Maximum
Tag	Jensor Marine	Description	Onits	(10)	Smallest	Largest	Winning	Maximum
T4_EXP	T4_EXP	T4_EXP	°C	100	194.34	661.44	0.0	1.0
T4_AV_REF	T4_AV ISO	T4_AV ISO	°C	100	26.37	711.14	0.0	1.0

Viertens wird es für diese Metadaten einen Plausibilitätscheck geben. Gibt es Unplausibilitäten, wird die Oberfläche erklären, welche diese sind und wie man sie korrigieren kann. Hier werden im Wesentlichen Tippfehler in den Messspannen und anderen Einträgen entdeckt, womit sichergestellt werden soll, dass alles numerischen Sinn ergibt.

Training Periods								
Current Training Periods								
1. 23.03.2016 09:30.00 - 08.04.2016 23:59:00								
Add Training Periods								
From 23 v March v 2016 v 09 v : 30 v								
To 8 • May • 2016 • - 23 • : 59 •								
Fxclude Conditions								
Add Exclude Conditions								
Condition select tag v s								

Fünftens können Sie die Zeitspannen eintragen, in denen die Maschinerie sich in einem gesunden Zustand befand sowie etwa notwendige Ausschlussbedingungen. Diese beiden Wizard-Einträge sind auf alle Modelle dieses Datensatzes anwendbar. Sie können aber, wenn Sie möchten, diese beiden Informationen für jedes Modell individuell anpassen. Es ist wirkungsvoller, dies hier global zu tun. Es macht Sinn, die Zeiten mit gesundem Zustand und auch die Ausschlussbedingungen auf die ganze Maschine anzuwenden. Deshalb empfehlen wir, dass Sie die individuellen Anpassungen für das jeweilige Modell nur in Ausnahmefällen vornehmen.

Auf der letzten Seite befindet sich ein Knopf, um die Modellierung in Gang zu setzen. Wenn Sie auf diesen Knopf klicken, wird der Computer automatisch die unabhängigen Variablen selektieren und alle Modelle für die historischen Daten trainieren und anwenden, und zwar für jedes einzelne Modell, welches in den Metadaten angefordert wird. Abhängig von den angeforderten Modellen und der Anzahl der Trainingsdaten, kann dies eine erhebliche Zeit in Anspruch nehmen. Wir empfehlen deshalb, den Knopf am Ende eines Arbeitstages oder an einem Freitagnachmittag zu betätigen, damit der Computer viele Stunden lang arbeiten kann, ohne Sie bei Ihrer sonstigen Arbeit zu behindern.

© 2005 — 2023 algorithmica technologies Inc., alle Rechte vorbehalten